DEEP LEARNING FOR INTELLIGENT IOT: OPPORTUNITIES, CHALLENGES AND SOLUTIONS
Keywords:
Internet of Things (IoT), Artificial Intelligence, Deep Neural Networks, Industrial Automation (IIoT), Massive Data Analytics.Abstract
Next-generation wireless infrastructures need to be resilient and self-reliant. The Internet of Things (IoT) is transforming how technology is embedded into people's everyday routines. IoT solutions are extremely varied, encompassing essential domains such as smart urban environments, healthcare systems, and industrial automation. Artificial intelligence (AI) techniques, particularly machine learning (ML), are being integrated into IoT to enhance network functionality and make it more autonomous. Deep learning (DL), a subset of ML, is resource-intensive and computationally demanding. One of the primary obstacles is incorporating deep learning strategies into IoT to significantly increase the effectiveness of IoT-based solutions. As a result, solutions developed on top of this enhanced architecture will gain considerable advantages, and it will also facilitate widespread adoption of the system.
References
[1] R. Ali, A. Nauman, Y. B. Zikria, B.-S. Kim, S. W. Kim, Performance optimization of qos-supported dense wlans using machine-learning-enabled enhanced distributed channel access (medca) mechanism, Neural Computing and Applicationsdoi:10.1007/s00521-019-04416-1. URL https://doi.org/10.1007/ s00521-019-04416-1
[2] H. S. Z. Kazmi, N. Javaid, M. Awais, M. Tahir, S.-o. Shim, Y. B. Zikria, Congestion avoidance and fault detection in wsns using data sci-ence techniques, Transactions on Emerging Telecommunications Technologies e3756E3756 ett.3756. arxiv: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3756, doi:10.1002/ett.3756. URL https://onlinelibrary.wiley.com/doi/abs/ 10.1002/ett.3756
[3] F. Al-Turjman, E. Ever, Y. B. Zikria, S. W. Kim, A. Elmahgoubi, Sahci: Scheduling approach for heterogeneous content-centric iot applications, IEEE Access 7 (2019) 80342–80349.
[4] A. Saleem, M. K. Afzal, M. Ateeq, S. W. Kim, Y. B. Zikria, In telligent learning automata-based objective function in rpl for iot, Sustainable Cities and Society 59 (2020) 102234. doi:https: //doi.org/10.1016/j.scs.2020.102234. URL http://www.sciencedirect.com/science/article/pii/ S2210670720302213
[5] M. K. Afzal, M. H. Rehmani, Y. B. Zikria, Q. Ni, Data-driven intelligence in wireless networks: Issues, challenges, and solution, Transactions on Emerging Telecommunications Technologies 30 (8) (2019) e3722. arXiv: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3722, doi: 10.1002/ett.3722. URL https://onlinelibrary.wiley.com/doi/abs/ 10.1002/ett.3722
[6] T. R. G, S. P. R.M, P. M., C. L. Chowdhary, P. K. R. M, S. Hakak, W. Z. Khan, A deep neural networks based model for uninterrupted marine environment monitoring, Computer Communications 157 (2020) 64 – 75. doi:https://doi.org/10.1016/j.comcom.2020.04.004. URL http://www.sciencedirect.com/science/article/pii/ S0140366420300542
[7] F. Al-Turjman, M. H. Nawaz, U. D. Ulusar, Intelligence in the internet of medical things era: A systematic review of current and future trends, Computer Communications 150 (2020) 644 – 660. doi:https://doi.org/10.1016/j.comcom.2019.12.030. URL http://www.sciencedirect.com/science/article/pii/ S0140366419313337
[8] S. A. Haider, M. N. Adil, M. Zhao, Optimization of secure wireless communications for iot networks in the presence of eaves- droppers, Computer Communications 154 (2020) 119 – 128. doi:https://doi.org/10.1016/j.comcom.2020.02.027. URL http://www.sciencedirect.com/science/article/pii/ S0140366419311946
[9] Y. Chen, B. Song, X. Du, N. Guizani, The enhancement of catenary image with low visibility based on multi-feature fusion network in railway industry, Computer Communications 152 (2020) 200 – 205. doi:https://doi.org/10.1016/j.comcom.2020.01.040. URL http://www.sciencedirect.com/science/article/pii/ S0140366419312733
[10] O. Irshad, M. U. G. Khan, R. Iqbal, S. Basheer, A. K. Bashir, Performance optimization of iot based biological systems using deep learning, Computer Communications 155 (2020) 24 – 31. doi:https://doi.org/10.1016/j.comcom.2020.02.059. URL http://www.sciencedirect.com/science/article/pii/ S0140366419312782
[11] M. A. Amanullah, R. A. A. Habeeb, F. H. Nasaruddin, A. Gani, E. Ahmed, A. S. M. Nainar, N. M. Akim, M. Imran, Deep learning and big data technologies for iot security, Computer Communications 151 (2020) 495 –517. doi:https://doi.org/10.1016/j.comcom.2020.01.016. URL http://www.sciencedirect.com/science/article/pii/ S0140366419315361