

EFFECTS OF AIR POLLUTION (PM2.5, NITROGEN DIOXIDE, AND OZONE) ON RESPIRATORY AND CARDIOVASCULAR HEALTH

Dr Saloni Jain

Assistant in Samarkand State Medical University Samarkand, Uzbekistan
Email : 15SALONI2626@GMAIL.COM

Abstract: *Air pollution has emerged as a critical environmental determinant of health, contributing substantially to global disease burden. Fine particulate matter (PM2.5), nitrogen dioxide (NO₂), and ground-level ozone are among the most harmful air pollutants due to their widespread presence and biological activity. Numerous studies have established a strong association between exposure to these pollutants and the development of respiratory and cardiovascular disorders. This article explores the health impacts of PM2.5, NO₂, and ozone, emphasizing their role in disease causation and progression. Evidence indicates that these pollutants induce oxidative stress, systemic inflammation, and vascular dysfunction, ultimately increasing morbidity and mortality. Addressing air pollution is therefore essential for effective disease prevention and sustainable public health planning.*

INTRODUCTION

The increasing pace of industrial growth, urban expansion, and motorized transportation has led to a noticeable deterioration in air quality across many regions of the world. Air pollution is now recognized as one of the leading environmental threats to human health, particularly in densely populated urban areas. Long-term exposure to polluted air has been linked to reduced life expectancy and a rise in chronic diseases.

Among the various airborne contaminants, PM2.5, NO₂, and ozone are of particular concern because of their ability to penetrate deep into the respiratory system and trigger systemic effects. These pollutants have been associated with a wide range of health outcomes, including asthma, chronic respiratory conditions, heart disease, and stroke. The present article examines the impact of these pollutants on respiratory and cardiovascular health and discusses the biological processes involved.

Major Air Pollutants and Their Sources

Fine Particulate Matter (PM2.5)

PM2.5 consists of microscopic particles suspended in the air with a diameter small enough to reach the deepest regions of the lungs. Common sources include emissions from vehicles, industrial activities, power generation, and the burning of solid fuels for cooking and heating. Due to their small size, these particles can enter the bloodstream and affect organs beyond the lungs.

Nitrogen Dioxide (NO₂)

Nitrogen dioxide is a toxic gas mainly produced by high-temperature combustion processes, such as those occurring in vehicle engines and power plants. It is commonly

used as an indicator of traffic-related air pollution and contributes to the formation of other harmful pollutants, including ozone and secondary particulate matter.

Ground-Level Ozone

Ground-level ozone is not directly emitted but is formed through chemical reactions between nitrogen oxides and volatile organic compounds under sunlight. Unlike protective stratospheric ozone, this form is harmful and plays a significant role in aggravating respiratory and cardiovascular conditions.

Impact on Respiratory System

Exposure to air pollutants such as PM2.5, NO₂, and ozone has been strongly linked to both acute and chronic respiratory problems. Short-term exposure may cause symptoms such as throat irritation, coughing, chest tightness, and difficulty breathing. Prolonged exposure increases the likelihood of developing chronic lung diseases.

PM2.5 particles can cause persistent inflammation in lung tissues, leading to reduced lung capacity and exacerbation of conditions like asthma and chronic obstructive pulmonary disease. Children, older adults, and individuals with existing respiratory illnesses are especially susceptible. Elevated levels of NO₂ have been associated with increased respiratory infections and hospital admissions, particularly among children. Ozone exposure damages airway linings and reduces the lungs' ability to defend against infections, contributing to long-term respiratory impairment.

Impact on Cardiovascular System

Air pollution also exerts significant effects on the cardiovascular system. Fine particles inhaled into the lungs can enter the circulation, triggering widespread inflammatory responses and oxidative damage. These changes increase the risk of developing hypertension, atherosclerosis, and other cardiovascular conditions.

Numerous studies have linked PM2.5 exposure to irregular heart rhythms, elevated blood pressure, and higher rates of heart attacks and strokes. NO₂ exposure has been associated with vascular inflammation and impaired endothelial function, increasing cardiovascular mortality. Ozone may worsen pre-existing heart conditions by increasing oxidative stress and placing additional strain on the heart.

Pathophysiological Mechanisms

The adverse health effects of air pollution are mediated through several interconnected biological mechanisms. One of the primary pathways involves the generation of reactive oxygen species, leading to oxidative stress and chronic inflammation. These processes can damage lung tissue and blood vessels, contributing to disease progression.

Air pollution also affects the autonomic nervous system, potentially altering heart rate and blood pressure regulation. Additionally, pollutants may enhance blood clot formation and increase blood viscosity, thereby raising the risk of cardiovascular events such as thrombosis and stroke.

Public Health Significance

The widespread health effects of air pollution pose a major challenge to public health systems worldwide. Increased healthcare costs, loss of productivity, and premature deaths highlight the urgent need for preventive strategies. Improving air quality through stricter environmental regulations, cleaner energy sources, and sustainable urban planning is essential.

Public education, early warning systems during pollution peaks, and targeted interventions for vulnerable populations can significantly reduce health risks. From a medical ecology perspective, air pollution control requires an integrated approach that links environmental protection with human health promotion.

Conclusion

PM2.5, nitrogen dioxide, and ozone are major contributors to the global burden of respiratory and cardiovascular diseases. Both short-term and long-term exposure to these pollutants have been shown to increase illness and premature death. Effective control of air pollution through policy implementation, technological innovation, and public awareness is crucial for safeguarding human health and promoting environmental sustainability.

REFERENCES:

1. Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., Smith, S. C., & Tager, I. (2004). Air Pollution and Cardiovascular Disease. *Circulation*, 109(21), 2655-2671. <https://doi.org/10.1161/01.cir.0000128587.30041.c8>
2. Fuller, R., Landrigan, P. J., Balakrishnan, K., Bathan, G., Bose-O'Reilly, S., Brauer, M., Colborn, T., Chiles, T., Crain, D., Fobil, J., et al. (2022). Pollution and Health: A Progress Update. *Lancet Planetary Health*, 6(6), e535–e547.
3. Hoffmann, B., Boogaard, H., de Nazelle, A., Andersen, Z. J., Abramson, M., Brauer, M., Brunekreef, B., Forastiere, F., Huang, W., Kan, H., Kaufman, J. D., Katsouyanni, K., Krzyzanowski, M., Kuenzli, N., Laden, F., Nieuwenhuijsen, M., Mustapha, Adetoun, Powell, P., Rice, M., et al. (2021). WHO Air Quality Guidelines 2021—Aiming for Healthier Air for all: A Joint Statement by Medical, Public Health, Scientific Societies and Patient Representative Organisations. *International Journal of Public Health*, 66. <https://doi.org/10.3389/ijph.2021.1604465>
3. Manosalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and Health Impacts of Air Pollution: A Review. *Frontiers in Public Health*, 8. <https://doi.org/10.3389/fpubh.2020.00014>